B.Sc. (Engg.) Energy	Course		Credit				
Programme Engineering	Code	EE 211	Hours	3 + 1 = 4			
Course Title Heat and Mass Transfer							
Course Introduction							
Heat and mass transfer are crucial to understanding and optimizing various industrial and							
scientific processes. This course begins with the basics of heat transfer, covering key							
topics such as conduction, convection, and radiation, along with the analogies between							
momentum and heat transfer. It also delves into the dynamics of boiling and condensation.							
In the realm of mass transfer, the course	-						
different phases, and mass transfer velo		-	•	•			
conditions. Additionally, the course exam							
on classification, coefficient estimation,			-	-			
concepts with practical considerations, t	-	ips student	ts to effecti	vely analyze			
and improve heat and mass transfer syste							
MappedSDG-7: Affordable and eSDGsSDG-9: Industry, Innova	0,	structure					
Learn	ing Outcomes						
1. Illustrate the modes of heat and mas	ss transfer in er	ngineering	systems. (C2)			
2. Compare the rates of heat and mass			•	·			
various modes of transfer. (C4)							
3. Apply the problem-solving skills ess	ential to heat a	and mass tr	ransfer in e	ngineering-			
based scenarios. (C3)		11					
Course Content Assignments/Readings							
	Unit-I Basics of Heat Transfer						
1. Introduction home							
1.1. Thermodynamics and Heat Transfer assignment				oblem-			
	1.2. Engineering Heat Transfer ba						
	1.3. Heat and Other Forms of Energymaterials/lea1.4. The First Law of Thermodynamicsetc.						
	•	etc.					
1.5. Heat Transfer Mechanisms							
21 One dimensional	Unit-II Conduction 2.1. One dimensional heat conduction						
Week 2 equations and their solutions for different							
geometries							
2.2 Steady heat conduction	n in thermal						
Week 3 22. Steady heat conduction in thermal resistance networks and multilayer surfaces							
resistance networks and mi	resistance networks and multilayer surfaces						
resistance networks and mu	lltilayer surface						
Week 3resistance networks and mu2.3. Transient heat conductWeek 4-52.3.1Lumped System Ana	-						

	2.3.2. Transient Heat Conduction in Large Plane Walls, Long Cylinders, and Spheres with Spatial Effects	
Week 6-7	Unit-III Convection 3.1. Fundamentals of convection 3.2. Free (Natural) convection 3.3. Forced convection	
Week 8	Unit-IV Radiation 4.1. Fundamentals of thermal radiation 4.2. Radiation heat transfer	
Week 9	Unit-V Heat Transfer Equipments 5.1. Heat Exchangers 5.2. Selective equipments	
Week 10	Unit-VI Basics of Mass Transfer6.1. Introduction6.2. Steady state moleculer diffusion in fluidsat rest and in laminar flow	
Week 11	Unit VII: Mass Transfer Coefficients 7.1. Mass transfer coefficients in laminar flow and turbulent flow 7.2. Mass and heat transfer analogies	
Week 12	Unit VIII: Interphase Mass Transfer 8.1. Mass transfer between phases 8.2. Two-film theory and equilibrium stages	
Week 13- 14	Unit IX: Mass Transfer Equipments 9.1. Introduction to mass transfer equipments 9.2. Design considerations for absorbers and other equipments	
	Unit X: Simultaneous Heat and Mass Transfer	
Week 15	10.1. Evaporation and condensation mechanisms.10.2. Boiling and sublimation.10.3. Heat and mass transfer during phase change.	
Week 16	10.4. Case study	
	Textbooks and Reading Materi	al
Sing	wa, R. (2021). Heat and Mass Transfer. Sv gapore. hri, A., & Zhang, Y. (2020). Fundamentals of M	

Flow. Springer.

- 3. Karwa, R. (2020). Mass Transfer. In Heat and Mass Transfer (pp. 1041-1066).Springer,Singapore.
- 4. Çengel, Y. A., Ghajar, A. J. (2019). Heat and Mass Transfer: Fundamentals & Applications. United Kingdom: McGraw-Hill Education.
- 5. Flynn, A. M., Akashige, T., Theodore, L. (2019). Kern's Process Heat Transfer. United Kingdom:
- 6. Wiley.Wetzel, T., & Boeckh, P. V. (2012). Heat Transfer: Basics and Practice. Springer.
- 7. Sinha, A. P., & De, P. (2012). Mass transfer: principles and operations. PHI Learning Pvt. Ltd.
- 8. Raju, K. S. (2011). Fluid mechanics, heat transfer, and mass transfer: chemical engineering practice. John Wiley & Sons.
- 9. Massarotti, N. & Mauro, A. (2019). Heat and mass transfer in energy systems. MDPI.

Teaching Learning Strategies

The learning and teaching strategies will be comprised of lectures via multimedia, white/blackboard and online modes, group discussions to enhance critical thinking, individual and group assignments, project based learning, reading and writing assignments, and presentations.

Assignments: Types and Number with Calendar

Week	1	2	3	4	5	6	7	8
Activity	-	-	-	Assignment 1	-	-	-	-

Week	9	10	11	12	13	14	15	16
Activity	-	-	-	-	Assignment 2	Ι	Ι	-

The abovementioned schedule of assignments/quizzes/presentations is tentative. The schedule will be provided to the students at the start of semester.

	Assessment					
Sr. No.	Elements	Weightage	Details			
1.	Midterm Assessment	35%	Written assessment at the mid-point of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper,			

			research proposal development, field work, report writing, and viva-voce examination, etc.
2.	Sessional Assessment	25%	This assessment may include classroom participation, assignments, presentations, viva voce, attitude and behavior, hands-on- activities, short tests, projects, practical, reflections, readings, quizzes etc.
3.	Final Assessment	40%	Written assessment at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work, report writing, and viva-voce examination, etc.